Загрязнители окружающей среды перераспределяются в пространстве не только вследствие движения воздуха, воды ит. д., но и потому, что они попадают в пищу живым организмам. В этом случае путь не может быть очень сложным. Результаты этого могут быть неожиданными. Например, небольшие количества ядов, применяемые на болотах для борьбы с комарами, могут в конце концов привести к гибели птиц, у которых эти концентрации увеличиваются в сотни и тысячи раз. Происходит это потому, что яд попал в пищевую цепь и переходит от одних организмов к другим, постепенно увеличивая свою концентрацию. Ясно, что правильно оценить последствия загрязненности окружающей среды можно, только изучив все пути циркуляции загрязнителей, и, прежде всего, пищевые пути, или, как их называют, пищевые цепи.

Что такое пищевая цепь? Поле засевают люцерной. Ею кормят телят. Телятиной кормят детей. Это и есть пример пищевой цепи. Для полноты сюда надо добавить еще одно звено, самое первое преобразование энергии Солнца в органическое вещество. Это осуществляет люцерна в процессе фотосинтеза. Мы говорим "звено" и "цепь" не случайно. Каждый из указанных этапов (звеньев) действительно связан в единую цепь . Мы не сможем кормить детей телятиной, если выпадет самое первое звено цепи— поступление солнечной энергии. То же относится ко второму и третьему звену — без травы не будет телят, без телят не будет телятины для детей. Поэтому мы говорим о пищевых цепях.

Пищевые цепи могут иметь различное количество звеньев. Так, вместо люцерны можно посеять рис и кормить им детей. Тем самым мы уменьшим число звеньев цепи, сделаем цепь для детей самой короткой.

Можно привести другой пример. Солнечную энергию преобразует не люцерна, а зеленые растения в морях и океанах — фитопланктон. Им питается зоопланктон. Зоопланктон поедают маленькие хищники-рыбы. Их же поедают более крупные хищные рыбы. Этими рыбами питаются люди. В этом случае количество звеньев пищевой цепочки от начала, то есть от фитопланктона, который первый сумел приобрести энергию, до человека увеличилось. Звенья цепи: фитопланктон, зоопланктон, малый хищник, крупный хищник, человек (тоже хищник).

Все в природе может нормально существовать продолжительное время — если будет сохраняться баланс. Если образуется определенное количество органического вещества, то это же его количество в течение какого-то времени должно разлагаться, использоваться. Круг должен обязательно замкнуться.

Вернемся к примеру с фитопланктоном. Его поедает (специалисты говорят "выедает") зоопланктон. Зоопланктон выедают мелкие рыбы (хищники), а их поедают крупные хищные рыбы. Далее, допустим, что крупная хищная рыба (последнее звено в этой пищевой цепи) погибла. Ее никто не съел, она просто погибла, стала трупом. Что дальше? Труп этой рыбы— источник органических веществ. Рассмотренная здесь пищевая цепочка начиналась с того, что фитопланктон благодаря солнечной энергии создавал в процессах фотосинтеза органические вещества. А тут это органическое вещество не надо создавать — оно имеется готовое, его содержит труп хищной рыбы. Что должно происходить дальше, поскольку круговорот прекратиться не может? С этого трупа (гнили) начинается новая пищевая цепочка. Только в ней делают свое дело не рыбы-хищники или другие животные, а их братья меньшие — бактерии, грибки и т. д. Они осуществят разложение данного органического вещества. Если бы разложение не происходило, если бы оно прекратилось, то те элементы, которые нужны живым организмам (биогенные элементы) , оказались бы со временем связанными в мертвых остатках. Ясно, что продолжение жизни было бы со временем невозможным.

Из сказанного ясно, что все живое связано друг с другом в определенном порядке через питание, через прохождение энергии. В работе звеньев пищевой цепи (а точнее, пищевых цепей, которые составляют пищевую сеть) участвуют все— от высших животных до бактерий, все живое. Каждое из них делает свое дело, пробегает свою дистанцию из общей эстафеты.

Так, растения, которые за счет солнечной энергии в процессе фотосинтеза образуют органическое вещество — источник энергии для других, — являются производителями (энергии). К сожалению, всем действующим лицам в этой драме присвоены иностранные названия (не только лицам, но и процессам), поэтому производители названы продуцентами, то есть производящими продукцию. Продуценты стоят всегда на первом месте, ближе всего к источнику энергии — Солнцу (конечно, в функциональном плане). Они всегда являются первым звеном пищевой цепочки. Далее от них энергия переходит к другим, которых (всех без исключения) называют "пожирателями". У специалистов это звучит более невинно и пристойно, поскольку они употребляют термин "фаги" (от греч. фагос, что значит пожирающий). Различают крупные пожиратели (макрофаги) и мелкие, микроскопические пожиратели (микрофаги) . Всех же, кроме производителей (продуцентов) , которые получают энергию от Солнца, называют консументами, от греч. консу-мо— потребляю. Консумент— это по сути хищник. Но хищник может питаться хищником. Поэтому различают первичные консументы, которые питаются продуцентами, вторичные консументы, питающиеся консументами первичными, и т. д.

При описании пищевых цепочек и сетей специалисты для наглядности широко используют диаграммы, схемы и схематические представления того, что происходит. В частности, широко используются так называемые экологические пирамиды. Суть их состоит в следующем.

Если энергию, которой обладает продуцент (то есть первое звено пищевой цепи) , изобразить в виде прямоугольника (кирпича) , то он будет служить основанием, фундаментом экологической энергетической пирамиды. Дело в том, что любому пожирателю (фагу) от жертвы, которую он пожирает, переходит только примерно одна десятая часть энергии. Остальная энергия рассеивается в пространстве. Поэтому энергетический "кирпич" этого фага будет примерно в 10 раз короче (сохраним ширину и высоту всех кирпичей одинаковыми). Положим этот энергетический кирпич первичного пожирателя (первичного консумента) на первый, что находится в фундаменте. Вторичный пожиратель, который питается первичным, получит от него (после него!) тоже примерно десятую часть его энергии. Поэтому третий кирпич (характеризующий энергию вторичного консумента) будет еще в 10 раз короче. Если выстроить кирпичи симметрично, то получится пирамида со ступенями, только весьма условно можно ее рисовать без ступеней, поскольку нет плавного уменьшения энергии. Оно происходит от уровня к уровню скачками, причем очень существенными (примерно в 10 раз). Если вы изображаете энергию на каждом пищевом уровне, то более высокий уровень всегда меньше по величине энергии, чем более низкий пищевой уровень. Кстати, специалисты не говорят "пищевой" уровень, а применяют термин трофический (от греч. трофо— питание) . Но суть от этого не меняется.

Строили экологические пирамиды не только по величине энергии на каждом трофическом уровне, но и по численности организмов, а также по количеству вещества (биомассы) . При этом рекомендуется биомассу измерять не килограммами, а килокалориями. Но оказалось, что такие экологические пирамиды могут быть передернутыми или вовсе не быть пирамидами. Перевернуты они тогда, когда пожиратель по количеству (по числу особей) или же по величине его общей биомассы больше, чем тот, кого он пожирает, то есть продуцента, или же пожирателя более низкого уровня. Так бывает. Например, в озерах и морях зимой производителя энергии (продуцента), то есть фитопланктона, меньше по массе, чем зоопланктона. Значит, вышележащий кирпич будет больше нижележащего. Только летом, в период весеннего "цветения", фитопланктона по массе больше, чем зоопланктона.

Исходя из сказанного, специалисты-экологи рекомендуют не очень обольщаться пирамидами численности и биомассы, тогда как пирамиды энергии считают очень показательными в смысле описания пищевой (трофической) структуры данного сообщества организмов. В сущности, это так и есть, поскольку энергия характеризуется скоростью прохождения массы пищи через пищевую цепь. Поэтому на ее форму не оказывают влияния ни изменение размеров различных особей в сообществе, ни интенсивность потребления ими пищи. Последние моменты сказываются на форме пирамид численности и биомассы. Таким образом, каждое сообщество особей, участвующих в единых пищевых цепочках, может успешно характеризоваться энергетической пирамидой. Она отражает трофическую (пищевую) структуру сообщества.

Трофическая структура сообщества является его фундаментальным свойством, которое весьма устойчиво. Так, если, например, в результате пожара или по другим причинам нарушилось соотношение между хищником и его жертвой— травоядным животным, то оно восстанавливается еще до того, как все виды, которые имелись здесь до бедствия, успеют восстановиться. Таким бедствием, конечно, может быть и обработка инсектицидом.

Что же касается размеров особей сообщества, о которых говорилось выше, то небезынтересно будет узнать, что чем меньше размеры особи, тем больше необходимо пищи (энергии), чтобы его прокормить (конечно, на единицу массы). Взрослому человеку требуется меньше пищи (в пересчете на один килограмм его массы) , чем грудному ребенку. Чем меньше животное, тем больше его метаболизм. Но чем меньше организмы, тем они проворнее. Было установлено, что при внесении органики количество рассеиваемой энергии увеличилось в 15 раз, хотя численность бактерий и грибов, ответственных за это, увеличилось менее чем в 2 раза.

Чтобы справиться с этой задачей, им пришлось быстрее "проворачивать" энергию. Более крупные организмы— простейшие— уже на это неспособны, не позволяют размеры. Поэтому их численность возросла существенно. Из сказанного выше ясно, почему размер урожая биомассы на корню (который выражают в общей сухой массе или общей калорийности всех организмов, которые присутствуют в данный момент времени) существенно зависит от размеров особей, составляющих сообщество. Кстати, поток энергии через пищевую цепь при этом сохраняется постоянным. Таким образом, чем крупнее организм, тем выше биомасса ("урожай") на корню. Например, урожай бактерий, имеющихся в любой данный момент, будет гораздо ниже урожая рыбы или же млекопитающих, несмотря на то, что эти группы, возможно, используют одинаковое количество энергии.

В самом начале мы говорили о двух пищевых цепочках, одна из которых начиналась с растений, а точнее, от солнечной энергии, а вторая— от уже имеющегося органического вещества в виде трупа. Естественно, это может быть труп как животного, так и растения. Эти две пищевые цепи специалисты называют по-разному, первую пастбищной (если даже речь идет о фитопланктоне), а вторую детритной. Детритом называют органическое вещество, которое вовлечено в процесс разложения. Само слово "детрит" означает продукт распада (от лат. детерере— изнашиваться) . Геологи этим термином называют продукты разрушения горных пород. Таким образом, вторая пищевая цепь имеет своим первым трофическим (пищевым) уровнем любые продукты распада органических веществ. Дальше мы эту пищевую цепь рассмотрим подробно, только вначале сделаем еще несколько добавлений к уже приведенным названиям организмов по признаку их питания.

Так, уже известные нам производители-продуценты органических веществ в процессах фотосинтеза специалисты называют автотрофами, то есть самопитающимися. Тех же, кто их поедает, называют гетеротрофами, то есть теми, которых кормят другие (те же автотрофы или другие гетеротрофы) .

Надо особо подчеркнуть, что все приводимые определения, ярлыки, присваиваемые организму, связаны только с его функцией, а не с его видом. Например, человек может быть травоядным, а точнее, растениеядным (вегетарианцем). Другими словами, это значит, что он в этом случае является первичным консументом, и в то же время макрофагом. И в то же время гетеротрофом. Но если человек питается мясом, то есть другими консументами, другими гете-ротрофами, другими макрофагами, то его следует причислить к консументам второго порядка — он становится консументом, который питается консументами. Правда, в другой терминологии все без изменений: он был и остается гетеротрофом, то есть тем, кого кормят другие, тем, кто питается другими. Видите, насколько все сложно с терминологией. Но усвоить ее надо для того, чтобы понимать текст в других учебниках экологии, где в большинстве случаев все эти термины применяются вперемешку, а главное, без объяснения их смысла. Органическое вещество, которое перестало быть живым животным или растением, должно быть разложено, и все составляющие элементы должны вернуться на круги своя и совершать бесконечные циклы в природе для того, чтобы не останавливалась жизнь.

Надо сказать, что процесс разложения органического вещества очень сложен и является многоэтапным. В биосфере имеется целый комплекс разрушителей, который состоит из большого числа видов. Они действуют последовательно и производят полное разложение. Конечно, различные органические вещества разлагаются с разной эффективностью, а точнее, скоростью. Так, жиры, сахара, белки разлагаются быстро. Растительная клетчатка, лигнин древесины, хитин, волосы и кости животных разрушаются очень медленно.

В процесс разложения вовлечены как живые организмы (живое вещество) , так и неживое (косное) вещество. Другими словами, разложение является результатом как биотических (био — значит жизнь), так и абиотических, то есть небиотических процессов. По определению, разложение— это "любое биологическое окисление, дающее энергию". Поскольку речь идет об окислении, то выделяют следующие типы разложения (им соответствуют аналогичные типы фотосинтеза). Во-первых, это аэробное дыхание с использованием молекулярного кислорода. Он является окислителем, акцептором электронов. Этот процесс является обратным процессу фотосинтеза, "нормального" фотосинтеза. В процессе аэробного дыхания образуются СО2 и Н2О из синтезированного органического вещества (СН2О) . Кроме СО2 и Н2О образуется вещество клетки. Если процесс идет не до конца (то есть дыхание является незавершенным), то образуются органические соединения, которые содержат энергию. Эта энергия в дальнейшем может перейти к другим организмам.

Кислородное (аэробное) дыхание характерно для всех высших растений и животных, а также для большинства представителей Monera и Protista. Построение клеток в их организмах, а также снабжение энергией для поддержания их жизнедеятельности происходит именно за счет их аэробного дыхания.

Во-вторых, это бескислородное дыхание (анаэробное). Окислителем в этом случае служит не кислород. Им может быть другое органическое или неорганическое вещество. Такой тип дыхания используют бактерии, дрожжи, плесневые грибы, простейшие. Этот процесс бескислородного дыхания может идти также в некоторых тканях высших животных, для которых характерно аэробное дыхание. Метановые бактерии являются хорошим примером анаэробов. Они, разлагая органическое соединение, образуют метан (СН4) . Это происходит путем восстановления либо органического углерода, либо углерода карбонатов. В последнем случае их дыхание является брожением. Кстати, метан известен как болотный газ. Когда он поднимается к поверхности, он окисляется или же самовоспламеняется. Метановые бактерии, о которых идет речь, принимают участие в разложении содержимого рубца у домашнего скота (и вообще у жвачных животных).

Можно привести и другой пример анаэробов . Это бактерии Desulfovibrio. Эти бактерии в бескислородных водах и глубоких отложениях восстанавливают S04 до газообразного Н^. Такой процесс происходит в Черном море. Газ Н^ поднимается в верхние слои отложений или даже до уровня поверхностных вод. Здесь он может быть использован фотосинтезирующими бактериями или другими организмами.

В-третьих, имеется анаэробное дыхание, а точнее, окисление, при котором окислителем служит само окисляемое органическое соединение. Такое дыхание называется брожением. Естественным примером таких организмов являются дрожжи. В почве дрожжи делают очень важное дело — разлагают растительные остатки.

Многие бактерии универсальны — могут пользоваться аэробным и анаэробным дыханием. Но результаты при этом будут разные. Образуются разные конечные продукты, и энергии высвобождается разное количество. При бескислородном (анаэробном) дыхании энергии высвобождается значительно меньше.

Надо сказать, что аэробные и анаэробные организмы функционально дополняют друг друга и очень тесно взаимосвязаны.

Нелишне сообщить, что специалисты называют микроорганизмы сапротрофами (от греч. сапрос— гнилой) , то есть питающимися гнилью. С таким же успехом можно сказать "пожирающие гниль", а значит, назвать их сапрофагами. В литературе оба термина в ходу.

Каким образом происходит разложение? В клетках бактерий, а также в грибном мицелии вырабатываются специальные вещества— наборы ферментов. Эти вещества способствуют протеканию специфических химических реакций, когда они выделяются бактериями в мертвое вещество. В процессе разложения образуются вещества, которые оказывают очень важное влияние на рост других организмов, находящихся в их окружении. Если вещества, выделяемые одним видом организмов, влияют на организмы других видов, то специалисты их называют "вторичными метаболитами". Эти выделяющиеся бактериями вещества — "вторичные метаболиты"— могут быть: 1) ингибиторами, от лат. ингибере — сдерживать, останавливать (примером служит антибиотик пенициллин, который производится плесневым грибом), 2) стимуляторами (различные витамины и другие вещества, способствующие росту, такие, как витамин В, гистидин, урацил, тиамин и др.). Несмотря на то, что указанные вещества — ферменты бактерий, широко используются в медицине десятками лет и известны каждому, химическая структура многих из них не выяснена до сих пор.

Многие животные, которые питаются продуктами разложения, то есть детритами (их можно назвать детритоядными) , питаются экскрементами, которые обогащены питательными веществами за счет жизнедеятельности микроорганизмов, которые поселились в них. Этих детритоядных животных называют копрофагами (от греч. копрос— навоз) , то есть пожирателями навоза. Кстати, этот процесс переваривания экскрементов повторяется неоднократно разными организмами и продолжается до тех пор, пока все органическое вещество (детрит) не будет утилизировано.

В сущности, разложение органического вещества организмов, которые перестали быть живыми, зависит очень сильно от их механического измельчения. Какие процессы приводят к их измельчению— всем известно. Это и замораживание с последующим оттаиванием, и воздействие силы текущей воды, и многое другое. Дальнейшее измельчение производят живые организмы, пропуская вещество через себя и передавая его как эстафету друг другу по цепочке навозного питания.

Почему бактерии выполняют это очень необходимое, полезное дело? Потому, что в процессах разложения они получают питание, получают возможность жить. Как говорят, они занимают в природе свою экологическую нишу, без них жизнь не могла бы продолжаться.

Надо иметь в виду, что процессы разложения, как и процессы фотосинтеза, должны идти с определенной скоростью. Все должно быть сбалансировано, и нарушение баланса в ту или другую сторону нарушает равновесие в природе. Так, в настоящее время человек ускоряет процессы разложения в природе. Он сжигает древесину и органические вещества, которые накоплены в горючих ископаемых. В результате в воздух выбрасывается СО2, которая фиксировалась в нефти, древесине, угле. Человек ускоряет процесс разложения и тем самым обогащает атмосферу Земли СО2, что, в свою очередь, может привести к изменению климата.

Увеличение количества СО2 происходит и в результате ведения интенсивного сельского хозяйства, поскольку оно сопровождается ускорением разложения гумуса. Что он собой представляет? Гумусовые вещества являются устойчивыми конечными продуктами разложения. Гумус обязательно присутствует в каждой экологической системе. Как мы уже видели, вначале идет размельчение органического вещества неживого организма— детрита. Это происходит в результате как физического, так и биологического воздействия на него. При этом высвобождается из детрита растворенное органическое вещество. После этого идет быстрое образование гумусового вещества. При этом микроорганизмы (сапротрофы) высвобождают дополнительное количество растворимых органических веществ. На третьей стадии разложения происходит более медленная минерализация гумуса.

Несмотря на очень важную роль в круговороте веществ гумуса, он пока что полностью не изучен. В частности, остается неясным, каким путем гумус разлагается. Специалистами рассматриваются два варианта разложения гумуса— особыми организмами, которые выделяют специальные ферменты, или же в результате абиотических химических процессов. Известно, что гумус имеет вид темного или желтовато-коричневого аморфного или коллоидного вещества. Химический состав гумуса довольно неопределенный. Собственно говоря, он не поддается обычному химическому лабораторному анализу. Исследования необходимо проводить непосредственно в натуре, на природе.

Гумус очень устойчив и далеко не все микроорганизмы способны его разлагать. Это обусловлено его химическим строением. Специалисты установили, что гумусовые вещества — это продукты распада белков и полиса харидов. Структура молекул гумуса такова, что они очень устойчивы к разложению микробами. В молекулах гумуса, который получен из лигноцеллюлозы, это обеспечивается образованием бензольного кольца фенольного типа и боковых цепей. Устойчивость естественного гумуса— это хорошо. Плохо другое — это искусственные токсические продукты (пестициды, гербициды, промышленные отходы), которыми человек обильно засоряет окружающую среду, столь же устойчивы и не поддаются разложению микроорганизмами (у них также образуется бензольное кольцо со всеми последствиями) . Указанные загрязняющие вещества не включаются в нормальный цикл с обязательным разложением и поэтому их накопление в окружающей среде очень опасно, тем более что они токсичны. Кстати, образование каменного угля является вторым этапом на пути образования гумусовых веществ. Образование гумусовых веществ происходит в присутствии кислорода, а образование из торфа лигнитов, а впоследствии бурого и в конце концов каменного угля происходит без кислорода. Концентрация углерода увеличивается по мере продвижения по этой цепи, последним звеном которой является каменный уголь.

Для проблемы избавления от загрязнителей окружающей среды важен процесс образования комплексов с ионами металлов. Эти комплексы нейтрализуют, обезвреживают данный токсический металл-загрязнитель. Если бы он не был связан указанными комплексами, то образовывались бы неорганические соли этого металла, обладающие токсическими свойствами. Этот процесс специалисты называют "захват клешней", или хелатирование (от греч. хеле — клешня). Но при чем тут клешня? Если изобразить структуру образующихся комплексов (например, на основе иона меди), то образовавшаяся структура напоминает две клешни краба, которые удерживают ион меди, связывают его, нейтрализуют его агрессивность, его токсичность. Если говорить на специальном языке, то клешнями краба являются пары ковалентных (-) и ионных (- и+) связей между двумя молекулами аминокислоты глицина. В данном случае процесс "связывания" металла очень на руку нам, поскольку благодаря ему связываются токсичные металлы, которые в больших концентрациях содержатся в промышленных отходах. Подчеркнем, что этот процесс хелатирования обязан естественному разложению органического вещества. Поэтому токсичность меди определяется не количеством меди, а тем количеством ионов меди, которые остались не связанными, но захваченными клешнями. А клешни образуются благодаря фитопланктону. Там же, где фитопланктона мало, то есть в открытом море, токсичность того же количества меди больше, чем в прибрежной полосе, где фитопланктона больше. По-видимому, такие условия, уменьшающие токсичность выбрасываемых в окружающую среду загрязненных металлов, можно создавать искусственно.

Мы называем бактерии, грибы, простейшие и водоросли "низшими" типами. Но, как ни парадоксально, "высшие" организмы не могут жить без микроорганизмов. Только "низшие" способны на то, чтобы выполнять практически все возможные биохимические превращения. Именно "низшие" микробы обеспечивают "тонкую настройку" всего сообщества живых организмов благодаря тому, что они быстро и эффективно приспосабливаются к изменяющимся условиям. Благодаря этим своим свойствам бактерии можно использовать для очистки бытовых отходов. Но их надо использовать в паре с беспозвоночными, которые подготовят для микроорганизмов субстрат, измельчив до нужных размеров вещество-загрязнитель. Такие биологические очистные фильтры весьма эффективны.

С самого начала мы говорили о двух пищевых цепочках. Одна из них начинается с солнечной энергии, которую усваивают растения.

Эту пищевую цепочку называют пастбищной (даже в том случае, если это "пастбище" находится в море, а травой служит планктон) . Вторая пищевая цепочка начинается от разлагающегося органического вещества, которое является источником энергии. Это детритная цепь. Обе эти пищевые цепи тесно взаимосвязаны. Например, животные съедают не всю траву (планктон). Часть ее гниет, то есть переходит в детритную пищевую цепь. Кроме того, пожиратели-животные (макрофаги) переваривают не всю поедаемую ими пищу. Часть непереваренных остатков выводится вместе с фекалиями. Они также переходят в детритную пищевую цепь.

Такое положение является нормальным. Травоядные не должны использовать — выедать больше половины прироста наземной растительности. В противном случае нарушится способность производителей (продуцентов) обеспечивать всю пищевую цепь. Из истории известно, что многие цивилизации погибли именно по этой причине— они допускали перевыпас скота.

Все хорошо в меру. Недовыпас столь же опасен, как и перевыпас, поскольку неиспользованная трава накапливается, а разлагаться не успевает. Это значит, что круговорот минеральных веществ существенно замедляется. Часто в таких случаях приходит на помощь пожар. (Не было бы счастья— да несчастье помогло.) Пожар делает свое доброе дело — он очень быстро возвращает в круговорот минеральные вещества, которые не успевали освободиться в процессах разложения.

Заканчивая рассмотрение пищевых цепочек, отметим, что отдельные звенья цепи не просто соединены в одну цепь, а практически входят друг в друга, составляют единое целое. Производители и пожиратели не являются антагонистами: последние заботятся о первых, как и первые о последних. Это, естественно, относится и к паре "жертва—хищник". Известно, что консумеяты (пожиратели) переносят элементы питания, распространяют семена растений и споры. Они синтезируют гормоны, благоприятно влияющие на производителей— кормовые растения. Так, микоризные грибы переносят элементы питания к корням растения. Это явление взаимной заботы специалисты называют мутуализмом. Такая связь называется обратной. Она направлена в обратную сторону, против потока энергии от продуцентов к консументам. Эта обратная связь является положительной, поскольку хищники и паразиты во многих случаях стараются обеспечить или даже улучшить благосостояние своих жертв.

Показателен такой пример. В теплице ученые изучали, как растут злаки, листья которых поедают кузнечики. Кузнечиков заменяли ножницами— срезали растение ножницами. Далее сравнивали рост растений, которые стригли кузнечики, с ростом тех растений, которые стригли ножницами сами ученые. Оказалось, что растения, которые объедали кузнечики, восстанавливались значительно быстрее тех, которые состригали ножницами. Почему? В чем разница? Оказалось, что в слюне насекомых имеется стимулятор — вещество, способствующее росту, восстановлению листьев растения. То же самое происходит и при выедании травы травоядными животными.

Подобных примеров бесконечное количество, поскольку вся природа — единое целое.

Из всего сказанного выше ясно, что судьба загрязняющих окружающую среду веществ часто непредсказуема. В одних случаях волею судеб они оказываются связанными и перестают проявлять свои токсические свойства. В других же случаях все происходит наоборот: попадая по воле человека в окружающую среду в казалось бы безвредных количествах, вредные вещества концентрируются и становятся опасными для живых организмов. В пищевой цепи происходит концентрирование некоторых веществ, в том числе и вредных. Это происходит вследствие накопления их организмами, поэтому его называют биологическим накоплением. Проиллюстрируем его суть примерами.

При активации и делении атомных ядер образуются радиоактивные осколки ядер — радионуклиды (нуклеос — ядро). Когда они проходят от одного звена пищевой цепи к другому, то постепенно накапливаются, концентрируются. Так, завод сливал в реку очень небольшие количества радиоактивных фосфора, йода, стронция и цезия. Все это делалось законно — специалисты считали, что такие количества (которые не превышали предельно допустимые концентрации по международным стандартам) не могут принести вреда рыбам и птицам. Но через некоторое время Комиссией по атомной энергии (дело было в США) было установлено, что в тканях рыб и птиц (питающихся рыбой) концентрация радионуклидов в тысячи раз превышала таковую в воде реки. Так, в яйцах гусей, которые гнездились на речных островах, концентрация радиоактивного фосфора оказалась в два миллиона раз выше, чем в речной воде. Надо ли говорить, что совершенно недостаточно использовать некоторые абстрактные предельно допустимые концентрации, не представляя себе продвижение вещества по пищевым цепям.

Описание пищевых цепей мы начали с применения ДДТ для очищения болота от комаров. Рассмотрим этот пример более детально. Распыляя ДДТ на болотах, специалисты полагали, что остатки его будут смываться и с водой уходить в реки и море. Но оказалось, что ядовитые остатки, которые находятся в детрите (разлагающемся органическом веществе), концентрируются в тканях животных (рыб и рыбоядных птиц). Эффективность накопления очень высокая: отношение содержания ДДТ в организме рыбоядного животного к содержанию его в воде достигает полумиллиона. Это отношение называется коэффициентом концентрации. Его измеряют в частях на миллион и обозначают как 1: млн. или млн.-1, то есть миллион в минус первой степени. Кстати, рыбы и птицы эффективно накапливают вещества благодаря своим значительным жировым отложениям. В них ДДТ и концентрируется. При этом накапливается практически любое вещество, которое впитывается (сорбируется) на частицах почвы и детрита. Затем оно растворяется в кишечнике и попадает в ткани организма животного. Для иллюстрации сказанного приведем численные значения, характеризующие накопление пестицида ДДТ в пищевой цепи.

Широкое применение ДДТ наделало (и продолжает делать) много бед. Были уничтожены целые популяции хищных птиц (скопы, сапсаны, пеликаны и др.), а также водных животных (например, крабов) . Птицы очень чувствительны к ДДТ, а также к другим инсектицидам, которые являются углеводородами. Это обусловлено тем, что эти вещества приводят к снижению в крови птиц концентрации стероидных гормонов. А это, в свою очередь, нарушает образование скорлупы яиц. Последствия этого очевидны— птенец не может развиваться, поскольку яйцо лопается в самом начале высиживания. Получается, что отдельная птица, получившая определенную дозу (допустимую) , сохранит свою жизнь. Но сообщество птиц, их популяция развиваться не может, поскольку птенцы вылупиться не могут. Так гибнет популяция. Человек тоже является хищником и поедает животных (в частности, рыб и птиц), которые концентрировали в себе вредные вещества. Но человеку повезло больше — пока пища из рыбы или птицы варится и обрабатывается, часть вредных веществ удаляется (но только часть!). Рыба в этом плане находится в более трудном положении— она поедает не только пищу (содержащую яд) , но и пропускает через себя воду, выцеживая из нее яд.

Психология человека очень наглядно иллюстрируется примером с ДДТ. В развитых странах осознали, что он вреден, в конце концов, для человека, и запретили его применение. Но производство ДДТ продолжается, и он сбывается в другие страны, где его применение не запрещено. Не самоубийство ли это? Человек посылает яд соседу (за деньги), хотя должен бы знать, что последствий этого ему не избежать. Для воздуха и воды нет государственных границ. И расстояния на Земле крохотные. Так, пингвины в Антарктиде не могут высиживать птенцов, поскольку скорлупа яйца лопается— и это на идеально чистом материке! Где бы мы ни выбрасывали загрязнители, где бы мы ни спрятались на земном шаре, как бы мы ни прятали голову, подобно страусу, последствия этого мы испытаем на себе .

Конечно, экологи, считая, что для рыбы домом является пруд, обходят эту трудность, оставляя открытыми двери и окна пруда. Они говорят, что экологическая система в пределах пруда является системой открытой, то есть системой, через границы которой происходит обмен энергией, веществом, информацией. Говоря этим языком, в пределах Земли не может быть закрытой (полностью автономной) экологической системы. Даже экологическая система, которая охватывает всю Землю (а это есть не что иное, как биосфера Земли), является системой открытой. Если бы мы попытались ее закрыть, то она не могла бы существовать ни одной минуты, так как прекратилось бы поступление энергии от Солнца, прекратилось бы взаимодействие биосферы с остальной Вселенной через информационное поле Вселенной. Все сказанное очень принципиально, и наши современные экологические проблемы вызваны главным образом неправильным представлением об окружающем нас мире. Человеку импонирует считать, что все или почти все происходит автономно, независимо друг от друга и, главное, что он, его действия, не зависят ни от чего, кроме его собственной воли. Что такое экологическая система, становится понятным уже из того, что мы приравняли ее биосфере Земли. Значит, экологическая система (экосистема) включает в себя живое (косное по В. И. Вернадскому) вещество и биокосное вещество. Изучить экосистему — значит установить процессы, протекающие в пределах системы, те взаимосвязи, которые там имеются. Конечно, можно определить систему и на сухом специальном языке: "Система — это упорядоченные взаимодействующие и взаимозависимые компоненты, образующие единое целое".

Экологическую систему определяют по-разному (но суть этих определений одна и та же):

"Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой и неживой частями, представляет собой экологическую систему, экосистему... "

"Экосистема — это часть биосферы, где существует хорошо упорядоченный обмен энергией и материалами между организмами и окружающей средой".

Английской эколог А. Тенсли, который и ввел в обиход термин "экосистема", определил ее как "взаимодействие живого населения с окружающей средой обитания".

Академик В. М. Сукачев в 1940г. дал такое определение экосистемы (он употреблял термин "биогеоценоз"): "Однотипное растительное сообщество вместе с населяющим его животным миром, включая микроорганизмы, с соответствующим участком земной поверхности, с особыми свойствами микроклимата, геологического строения почвы и водного режима". Правда, В. М. Сукачев делал различие между экосистемой и биогеоценозом: "Биогеоценозы, в отличие от экосистемы— дискретные биохорологические единицы, в той или иной степени отделенные друг от друга различными границами".

Таким образом, экологическая система включает в себя:

1. Неорганические вещества (С, N, С02, Н20 и др.) . Они находятся в непрерывном круговороте веществ в природе. Это косное вещество.

2. Органические соединения (белки, углеводы, липиды, гумусовые вещества и т. д.). Эти органические вещества связывают между собой биотическую и абиотическую части экосистемы, то есть живое и косное вещество. Органические соединения— это биокосное вещество.

3. Воздушную, водную и субстратную среду, которая включает в себя климатический режим, а также другие физические факторы. Естественно, это косное вещество.

4. Продуценты, которые могут производить пищу из простых органических веществ. Это, прежде всего, зеленые растения.

5. Консументы (как макроконсументы, так и микроконсумен-ты) . Продуценты и консументы подробно уже были рассмотрены. Ясно, что они составляют живое вещество.

Напомним, как понимал живое, косное и биокосное вещество В. И. Вернадский. Живое вещество— совокупность всех живых существ, населяющих планету (от простейших вирусов и клеточных до человека). Живое вещество характеризуется элементарным химическим составом, массой и энергией. Оно трансформирует солнечную энергию и вовлекает неорганическую материю в непрерывный круговорот. Косное вещество— это неживое и не связанное с жизнью вещество, к которому относятся глубинные породы, выбрасываемые вулканами в процессе горообразования, газы ит. д. При контакте с живым веществом косное вещество постепенно превращается в биокосное.

Биокосное вещество— вещество, имеющее минеральную основу, которая коренным образом преобразована жизнедеятельностью организмов. К нему относится почвенный покров, плодородие которого обусловлено наличием органических веществ, а также воздух и вода. По определению самого В. И. Вернадского, это вещество, "которое создается одновременно живыми организмами и косными процессами" и является "закономерной структурой из живого и косного вещества".

Вещества биокосного происхождения — это чаще всего трупы, отмершие части животных и растений, каменный уголь, нефть, торф, сланцы (в основном горючие вещества, слабо реагирующие с остальными веществами).

Имеется и космическое вещество, которое поступает из открытого космоса, главным образом в виде космической пыли, реже в виде метеоритов и еще реже в виде болидов. Оно легко "усваивается" биосферой.

В. И. Вернадский показал, что масса вещества, вовлекаемого в жизненные процессы, постепенно увеличивается в процессе эволюции биосферы (первый закон В. И. Вернадского), и скорость оборачиваемости вещества увеличивается также (второй закон) .

Далее мы рассмотрим свойства и эволюцию экосистемы. Изучая экосистемы, специалисты применяют различные методы, различные подходы. Главные из них два: от общего к частному и от частного к общему. Можно рассматривать экосистему как нечто единое, не детализируя все, происходящее в ней. При этом можно изучать вход и выход в систему. Прежде всего энергии и вещества. При этом на первый план выступают общие, совокупные или, как говорят специалисты, эмерд-жетные свойства системы. Этот подход к изучению экосистемы как к целому называется холистическим (от греч. холос— целый) .

При другом подходе специалисты изучают, как под лупой, то, что происходит внутри экосистемы, как взаимодействуют между собой отдельные организмы, виды и т. д., а также как они взаимодействуют с окружающей средой. Другими словами, это путь изучения частей, элементов экосистемы с дальнейшим обобщением данных на всю систему в целом. Это путь от частного к целому. Этот подход называют мерологическим (от греч. мерос— часть) . Надо ли говорить, что оба подхода нужны, что их нельзя противопоставлять друг другу. Конечно, на разных этапах исследования ученый располагает различным объемом информации как о частях экосистемы, так и об экосистеме как о целом. В одни периоды более успешно развивались исследования, использующие второй подход (от частного к целому) , в другие периоды— первый. Это естественно.

Живое вещество не является однородным. Имеются различные организмы, различные по своим свойствам, функциям и т. д. Но организмы существуют не сами по себе, по отдельности. Они образуют вместе популяции. Различные популяции образуют сообщества. Сообщества, в свою очередь, входят составной частью в экологические системы. Жизнь, функционирование популяций, сообществ и экосистем изучает экология. Но этими объектами не исчерпывается структура живого вещества. Ведь организм состоит из системы органов, а каждый орган его состоит из тканей, ткани состоят из клеток, а клетки из молекул и атомов. Эта структура живого вещества в деталях экологией не изучается (это предмет биологии и медицины), но и обойти ее, естественно, нельзя, поскольку речь идет о путях движения энергии, вещества ит. д. В этой структуре живого вещества Земли (атом, молекула, клетка, ткань, орган, система органов, организм, популяции, сообщества, экологические системы) каждое структурное звено специалисты называют уровнем организации. Они говорят: на организменном уровне, на популяционном уровне и т. д. Естественно, в структуре живого вещества выделяют генный уровень, то есть уровень генов. Он соответствует молекулярному уровню в приведенной выше схеме.

Каждая экосистема находится в непрерывном развитии (его обозначают термином сукцессия, от лат. сукцессио— преемственность, наследование). Экологическая сукцессия— это не просто развитие сообщества животных, это упорядоченный процесс развития, который не может происходить без изменения окружающей среды. В этом упорядоченном процессе развития сообщество изменяет окружающую среду так, что в новых условиях постепенно вместо старых видов образуются другие популяции, другие виды. В результате меняется характер всего сообщества. Этот упорядоченный процесс развития на определенном этапе выходит на плато, на равновесное состояние. Имеется в виду равновесие между живым веществом (сообществом экосистемы) и биокосным и косным веществом (абиотическими компонентами экосистемы). Это плато, это равновесие является зрелой стадией экологической системы. Таким образом, развитие (сукцессия) экосистемы определяется сообществом организмов (живым веществом), а скорость развития его, конкретный характер сообщества определяется косным веществом— физической средой.

Способность биосистемы (экосистемы) сохранять состояние равновесия и противостоять изменениям окружающей среды называется гомеостазом (от греч. гомео— то же, и стасис— состояние) .

Здесь речь идет не вообще о равновесии, а об устойчивом равновесии. Примером такого равновесия являются качели. Если их толкнуть (вывести из состояния равновесия), то они покачаются и в конце концов снова возвратятся в это свое исходное равновесное состояние. Такое равновесие является устойчивым. Есть равновесие и неустойчивое. Например, если камень лежит на вершине горы, он находится в состоянии равновесия. Когда мы его сдвинули к склону содержание кислорода в атмосфере уменьшается. Одновременно количество СО2 увеличивается. Это и понятно, поскольку за последние 80 лет производство электроэнергии увеличилось более чем в тысячу раз. 80% ее вырабатывается на тепловых электростанциях путем сжигания нефти, угля и газа. Как известно, при этом выделяется СО2. Потребление нефти за этот период возросло в 43, а газа в 34 раза. К концу второго тысячелетия потребление всех видов энергоресурсов достигнет примерно 25 млрд. тонн условного топлива. 71% из него составят нефть, газ и уголь.

Нельзя забывать и о транспорте. Он потребляет примерно шестую часть энергоресурсов. В результате функционирования транспорта большое количество токсичных веществ, которые содержатся в отработанных газах силовых установок, а также пыли и других вредных компонентов попадает в атмосферу. Одновременно загрязняются почва и водоемы вследствие слива и прилива горюче-смазочных материалов. Говоря о факторах, ограничивающих нормальное существование живых организмов, нельзя не сказать о такой характеристике воды, как рН. Этот показатель характеризует реакцию водных растворов (щелочная она или кислотная). Он выражает степень и характер ионизации водных растворов. Установлено, что жизнь может существовать только в том случае, если ионизация меняется только в известных пределах, а именно от одной миллионной доли до одной десятимиллиардной доли процента для ионов Н+. Это значит, что рН может изменяться в пределах от 5 до 9. рН морской воды находится в этих пределах (составляет примерно одну миллиардную долю ионов Н+) и равно 8 . Морская вода слабо щелочная, в ней ненамного преобладают положительные ионы Н+ над отрицательными ионами ОН-. Это соотношение (рН = 8) практически не меняется, несмотря на то, что в морской воде протекает бесконечное количество химических процессов.

Организмы выделяют аммиак, который и поддерживает в почвах и донных осадках значение рН, благоприятное для жизни самых разнообразных организмов. Без аммиака рН могло бы так сильно понизиться, что это имело бы катастрофические последствия для большинства видов организмов. Такие условия (слабо щелочные) очень благоприятны для жизни морских организмов.

Таким образом, современный газовый состав атмосферы, а также морской воды сформировался как результат деятельности организмов в продолжение предшествующих миллионов лет. Кстати, озон, являющийся зонтиком для живых организмов, также ими создан. Дело в том, что, создавая в земной коре свободный кислород, жизнь тем самым создала озонный слой, а значит, создала для себя зонтик, прикрывающий биосферу от губительного ультрафиолетового излучения Солнца.

Кстати, и почва обязана своему возникновению и существованию деятельности живых организмов. Согласно В. И. Вернадскому, почва является биокосным телом, состоящим одновременно из живых и косных (неорганизованных) тел. Значит, она возникла на Земле одновременно с живой материей. Почвы не могло быть до того, как не появились живые организмы. Как известно, жизнь в литосфере (от греч. литос— камень) — в верхней твердой оболочке Земли — концентрируется только в поверхностном слое земной коры, главным образом в почве .